假新闻的广泛传播越来越威胁到个人和社会。在单个领域(例如政治)上自动假新闻发现已做出了巨大的努力。但是,相关性通常存在于多个新闻领域,因此有望同时检测多个域的假新闻。基于我们的分析,我们在多域假新闻检测中提出了两个挑战:1)域转移,是由域,情感,样式等领域之间的差异引起的。世界分类仅输出一个单个领域标签,而不管新闻文章的主题多样性如何。在本文中,我们提出了一个记忆引导的多视图多域假新闻检测框架(M $^3 $ fend),以应对这两个挑战。我们从多视图的角度对新闻作品进行建模,包括语义,情感和风格。具体而言,我们建议一个域存储库来丰富域信息,该信息可以根据可见的新闻和模型域特征来发现潜在的域标签。然后,以丰富的域信息为输入,域适配器可以从各个域中的新闻的多个视图中适应汇总歧视性信息。对英语和中文数据集进行的大量离线实验证明了M $^3 $ fend的有效性,在线测试在实践中验证了其优势。我们的代码可在https://github.com/ictmcg/m3fend上找到。
translated by 谷歌翻译
在过去几年中,社交媒体上传播的错误消息激增,并导致了现实世界中的多种威胁。尽管有关于特定领域的虚假新闻(例如政治或医疗保健)的研究,但比较跨领域的虚假新闻几乎没有工作。在本文中,我们调查了2009年至2019年中国最大的Twitter式社交媒体平台的微博上的九个领域的虚假新闻。新收集的数据包含44,728个帖子,由40,215个用户发布,并重新发布了。 340万次。基于多域数据集的分布和传播,我们观察到,在诸如健康和医学之类的日常生活的领域中,虚假的消息比政治等其他领域的帖子更有效,但有效地传播的帖子较少,而政治虚假新闻具有最有效的扩散能力。关于微博上广泛散布的虚假新闻帖子与某些类型的用户(按性别,年龄等。此外,这些帖子都引起了重新播放的强烈情绪,并随着False-News启动器的积极参与而进一步扩散。我们的发现有可能在可疑新闻发现,真实性预测以及显示和解释中帮助设计错误的新闻检测系统。微博上的发现与现有作品的发现表明了细微的模式,这表明需要对来自不同平台,国家或语言的数据进行更多研究,以解决全球错误新闻。代码和新的匿名数据集可在https://github.com/ictmcg/characterizing-weibo-multi-domain-false-news上找到。
translated by 谷歌翻译
Muilti-Delicality数据在生物学中普遍存在,特别是我们进入了多OMICS时代,当我们可以测量来自不同方面(OMIC)的相同生物对象(单元)来提供更全面的洞察蜂窝系统。在处理此类多个OMICS数据时,第一步是确定不同模式之间的对应关系。换句话说,我们应该与与相同对象相对应的不同空格匹配数据。这个问题在单细胞多OMICS场景中特别具有挑战性,因为这种数据具有极高的尺寸。其次,匹配的单细胞多OMICS数据是罕见的且难以收集的。此外,由于实验环境的局限性,数据通常非常嘈杂。为了促进单细胞多OMICS研究,我们克服了上述挑战,提出了一种新颖的框架来对齐和集成单细胞RNA-SEQ数据和单细胞ATAC-SEQ数据。我们的方法可以通过在统一空间中有效地将上述数据与来自不同空间的高稀疏性和噪声从不同空间的噪声映射到低维歧管,使下游对准和直接集成。与其他最先进的方法相比,我们的方法在模拟和实际单细胞数据中执行更好。所提出的方法有助于单细胞多OMICS研究。对模拟数据集成的改进是显着的。
translated by 谷歌翻译
Pennylane是用于量子计算机可区分编程的Python 3软件框架。该库为近期量子计算设备提供了统一的体系结构,支持量子和连续变化的范例。 Pennylane的核心特征是能够以与经典技术(例如反向传播)兼容的方式来计算变异量子电路的梯度。因此,Pennylane扩展了在优化和机器学习中常见的自动分化算法,以包括量子和混合计算。插件系统使该框架与任何基于门的量子模拟器或硬件兼容。我们为硬件提供商提供插件,包括Xanadu Cloud,Amazon Braket和IBM Quantum,允许Pennylane优化在公开访问的量子设备上运行。在古典方面,Pennylane与加速的机器学习库(例如Tensorflow,Pytorch,Jax和Autograd)接口。 Pennylane可用于优化变分的量子本素体,量子近似优化,量子机学习模型和许多其他应用。
translated by 谷歌翻译
There is a dramatic shortage of skilled labor for modern vineyards. The Vinum project is developing a mobile robotic solution to autonomously navigate through vineyards for winter grapevine pruning. This necessitates an autonomous navigation stack for the robot pruning a vineyard. The Vinum project is using the quadruped robot HyQReal. This paper introduces an architecture for a quadruped robot to autonomously move through a vineyard by identifying and approaching grapevines for pruning. The higher level control is a state machine switching between searching for destination positions, autonomously navigating towards those locations, and stopping for the robot to complete a task. The destination points are determined by identifying grapevine trunks using instance segmentation from a Mask Region-Based Convolutional Neural Network (Mask-RCNN). These detections are sent through a filter to avoid redundancy and remove noisy detections. The combination of these features is the basis for the proposed architecture.
translated by 谷歌翻译
Ithaca is a Fuzzy Logic (FL) plugin for developing artificial intelligence systems within the Unity game engine. Its goal is to provide an intuitive and natural way to build advanced artificial intelligence systems, making the implementation of such a system faster and more affordable. The software is made up by a C\# framework and an Application Programming Interface (API) for writing inference systems, as well as a set of tools for graphic development and debugging. Additionally, a Fuzzy Control Language (FCL) parser is provided in order to import systems previously defined using this standard.
translated by 谷歌翻译
Quantum Machine Learning (QML) shows how it maintains certain significant advantages over machine learning methods. It now shows that hybrid quantum methods have great scope for deployment and optimisation, and hold promise for future industries. As a weakness, quantum computing does not have enough qubits to justify its potential. This topic of study gives us encouraging results in the improvement of quantum coding, being the data preprocessing an important point in this research we employ two dimensionality reduction techniques LDA and PCA applying them in a hybrid way Quantum Support Vector Classifier (QSVC) and Variational Quantum Classifier (VQC) in the classification of Diabetes.
translated by 谷歌翻译
Uncertainty quantification is crucial to inverse problems, as it could provide decision-makers with valuable information about the inversion results. For example, seismic inversion is a notoriously ill-posed inverse problem due to the band-limited and noisy nature of seismic data. It is therefore of paramount importance to quantify the uncertainties associated to the inversion process to ease the subsequent interpretation and decision making processes. Within this framework of reference, sampling from a target posterior provides a fundamental approach to quantifying the uncertainty in seismic inversion. However, selecting appropriate prior information in a probabilistic inversion is crucial, yet non-trivial, as it influences the ability of a sampling-based inference in providing geological realism in the posterior samples. To overcome such limitations, we present a regularized variational inference framework that performs posterior inference by implicitly regularizing the Kullback-Leibler divergence loss with a CNN-based denoiser by means of the Plug-and-Play methods. We call this new algorithm Plug-and-Play Stein Variational Gradient Descent (PnP-SVGD) and demonstrate its ability in producing high-resolution, trustworthy samples representative of the subsurface structures, which we argue could be used for post-inference tasks such as reservoir modelling and history matching. To validate the proposed method, numerical tests are performed on both synthetic and field post-stack seismic data.
translated by 谷歌翻译
Understanding 3D environments semantically is pivotal in autonomous driving applications where multiple computer vision tasks are involved. Multi-task models provide different types of outputs for a given scene, yielding a more holistic representation while keeping the computational cost low. We propose a multi-task model for panoptic segmentation and depth completion using RGB images and sparse depth maps. Our model successfully predicts fully dense depth maps and performs semantic segmentation, instance segmentation, and panoptic segmentation for every input frame. Extensive experiments were done on the Virtual KITTI 2 dataset and we demonstrate that our model solves multiple tasks, without a significant increase in computational cost, while keeping high accuracy performance. Code is available at https://github.com/juanb09111/PanDepth.git
translated by 谷歌翻译
Purpose: Tracking the 3D motion of the surgical tool and the patient anatomy is a fundamental requirement for computer-assisted skull-base surgery. The estimated motion can be used both for intra-operative guidance and for downstream skill analysis. Recovering such motion solely from surgical videos is desirable, as it is compliant with current clinical workflows and instrumentation. Methods: We present Tracker of Anatomy and Tool (TAToo). TAToo jointly tracks the rigid 3D motion of patient skull and surgical drill from stereo microscopic videos. TAToo estimates motion via an iterative optimization process in an end-to-end differentiable form. For robust tracking performance, TAToo adopts a probabilistic formulation and enforces geometric constraints on the object level. Results: We validate TAToo on both simulation data, where ground truth motion is available, as well as on anthropomorphic phantom data, where optical tracking provides a strong baseline. We report sub-millimeter and millimeter inter-frame tracking accuracy for skull and drill, respectively, with rotation errors below 1{\deg}. We further illustrate how TAToo may be used in a surgical navigation setting. Conclusion: We present TAToo, which simultaneously tracks the surgical tool and the patient anatomy in skull-base surgery. TAToo directly predicts the motion from surgical videos, without the need of any markers. Our results show that the performance of TAToo compares favorably to competing approaches. Future work will include fine-tuning of our depth network to reach a 1 mm clinical accuracy goal desired for surgical applications in the skull base.
translated by 谷歌翻译